Exercise A)

DATA:

Cylinders : 4 Engine total volume (4-stroke) : 2 L

Fuel : natural gas (34 MJ / m³)

Air-fuel ratio (**volume**) : 9 (A/F-vol)

Compression ratio : 10

Brake power : 50 kW (=effective)

Indicated thermal efficiency : 35% (fuel energy => piston energy)

Mechanical efficiency : 80% (piston=>crankshaft) i.e. minus the friction losses Volumetric efficiency : 70% (real air intake vs. theor. displacement volume)

QUESTION:

Find the engine speed (rpm) under these conditions

SOLUTION

Volume for 1 cylinder = 2000 mL / 4 = 500 mL

Compression ratio = $10 = (V_u + V_o) / V_o$ => $V_u = 9 V_o$, with $V_u + V_o = 500 \text{ mL}$

Displacement volume Vu for 1 cylinder = (9/10) * 500 mL = 450 mL

(dead volume $V_o = 50 \text{ ml}$)

Fresh air intake for 1 cycle

= volumetric efficiency * displacement volume = 0.7 * 450 = 315 mL

Fuel intake for 1 cycle = air intake / A/F-vol = 315 mL / 9 = 35 mL

Energy input, per cylinder and per cycle

= fuel (vol) * energy density (34 MJ/m³) = 35.10^{-6} m³*34.10⁶ = 1.19 kJ

Energy input per second?

Brake power = 50 kW = 50 kJ/s

= effective available power at the crankshaft, after friction loss

Indicated power = brake power / mechanical efficiency = 50 / 0.8 = 62.5 kW

= the power given to the 4 pistons

Hence friction loss can be derived to be = 62.5 - 50 = 12.5 kW

Thermal input power = indicated power / indicated thermal efficiency

= 62.5 / 0.35 = 178.57 kW

= the fuel input (LHV * fuel flow)

To 1 cylinder = 178.57 kW / 4 = 44.64 kW = 44.64 kJ/s

The engine speed is then 44.64 kJ/s divided by 1.19 kJ/cycle = 37.5 cycles/s
One cycle is 2 revolutions! (4-stroke)

Thus in rpm the engine speed is = 37.5 * 2 * 60 s/min = 4500 rpm

Let's see how we could relate this to a more usual fuel consumption figure (in L or kg / 100 km).

In the example, natural gas fuel intake is 35 ml per cycle per cylinder. We have 37.5 cycles per second and 4 cylinders, thus the fuel intake is 0.035 L * 37.5 * 4 = 5.25 L/s = 315 L/min = 18.9 m³ / h (13.2 kg / h with natural gas density of 0.7).

With a LHV of 34 MJ / m^3 , the consumption is then 18.9 * 34 = 642.6 MJ / h.

Compared to gasoline with an energy content of \approx 32 MJ / L, the equivalent gasoline consumption would then be 642.6 MJ / 32 = 20 L /h.

At a brake power of 50 kW and 4500 rpm, the 2 L engine is running at (very) high load and we may estimate the vehicle speed at probably \approx 150 km/h.

Finally the equivalent gasoline consumption under these load conditions is then 20 L/h / 150 km/h = 13.3 L / 100 km.

Average consumption of a 2 L gasoline car is around 8-9 L / 100 km.

As the engine runs here at <u>high speed and load</u> (4500 rpm, 50 kW), fuel consumption is logically higher, therefore we see that the calculated values are plausible.

Exercise B)

DATA:

Cylinders : 4

Fuel LHV (diesel) : 42 MJ / kg
Bore : 120 mm
Stroke : 100 mm
Air density : 1.15 kg/m³
Air-fuel ratio (mass) : 15 (A/F-mass)
Engine speed : 2000 rpm
Brake power : 60 kW
Brake thermal efficiency : 30%
Mechanical efficiency : 80%

QUESTIONS:

Calculate

- 1) Fuel consumption (kg/s)
- 2) Air consumption (m³/s)
- 3) Volumetric efficiency (%)
- 4) Brake mean effective pressure (bar)
- 5) Mean piston speed (m/s)

Brake power (60 kW)

```
= fuel consumption (g/s) * fuel LHV (42 MJ/kg) * brake thermal efficiency (0.3)
```

=> fuel consumption = 60 kW / (0.3 * 42 MJ/kg) = 4.762 g / s

Air consumption

= fuel consumption * A/F-mass ratio = 4.762 * 15 = 71.43 g/sWith air density of 1.15g/L, the air consumption in volume is 71.73 / 1.15 = 62.1 L/s

Air flow rate for 1 cylinder = 62.1 / 4 = 15.53 L / s

Volumetric efficiency

= actual air flow per cylinder / theoretical air flow for swept volume displacement Theoretical swept volume for 1 cylinder = π * (0.12/2)² * (0.1) per cycle = 1.13 L / cycle Engine speed = 2000 rpm = 2000 / 60 = 33.33 rps

2 revolutions for 1 cycle! (4-stroke) => the engine performs 16.67 injection cycles/s => theoretical air flow per s for 1 cylinder = 1.13 L/cycle * 16.67 cycles /s = 18.833 L/s

Hence volumetric efficiency = 15.53 / 18.833 = 82.4%

Energy (J) = Pressure x Volume

Power (J/s) = Pressure x (Vol/s)

The effective mean pressure P that results from this fundamental equation, when taking the effective brake power, is the brake mean effective pressure BMEP (bar).

BMEP (bar)

= brake power (60 kW) / theoretical air volume flow of the engine

The theoretical air volume flow of the engine = 18.833 L/s (1 cylinder) * 4 (cylinders) = $75.332 \text{ L/s} = 0.075332 \text{ m}^3/\text{s}$

Then the BMEP = $60'000 \text{ J/s} / 0.075332 \text{ m}^3/\text{s} = 796'474 \text{ J/m}^3 = 796.5 \text{ kN/m}^2 =$ **7.96 bar**

Mean piston speed

= twice the stroke length (L) * number of revolutions per second

= 2 * 0.1 * 33.33 rps = **6.67 m/s**

Also here let's see how we could relate this to a more usual fuel consumption figure (in L or kg / 100 km).

The fuel consumption is 4.762 g/s = 285.7 g/min = 17.14 kg/h.

The swept volume is 1.13 L per cycle for 1 cylinder, hence 4.5 L for the 4 cylinders. With these data and the rather low engine speed of 2000 rpm we can safely conclude we deal with a diesel engine of a Jeep or similar (buses and trucks are more like 7 to 15 L engines). Diesel fuel density is 0.85 L / kg, so the consumption would be 17.14 / 0.85 = 20.16 L/h. At a brake power of 60 kW it may be driving at ≈ 120 km/h, thus the fuel consumption for 100 km would be 20.16 L/h / 120 km/h = 16.8 L / 100 km. Which is not surprising for a 4.5 L Jeep.

ME-551 4 J Van herle